PROPOSITIONAL LOGIC (2)

based on

Huth \& Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004
Russell \& Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Clauses

- Clauses are formulas consisting only of \vee and \neg

$$
\begin{aligned}
& p \vee q \vee \neg r \\
& \neg p \vee \neg q
\end{aligned}
$$

(brackets within a clause are not allowed!)
they can also be written using $\rightarrow, \quad \vee($ after \rightarrow) and \wedge (before \rightarrow)

Empty clause is considered false

$$
\begin{aligned}
& r \rightarrow p \vee q \\
& p \wedge q \rightarrow \perp
\end{aligned}
$$

$$
\top \rightarrow p \vee q
$$

$$
\rightarrow \top \rightarrow \perp
$$

Clause without positive literal

Clause without negative literal
an atom or its negation is called a literal

Conjunctive \& Disjunctive

 Normal Form- A formula is in conjunctive normal form if it consists of a conjunction of clauses

$$
\begin{aligned}
& (p \vee q \vee \neg r) \wedge(p \vee \neg q) \wedge(p \vee r) \\
& (r \rightarrow p \vee q) \wedge(q \rightarrow p) \wedge(T \rightarrow p \vee r)
\end{aligned}
$$

- "conjunction of disjunctions"
- A formula is in disjunctive normal form if it consists of a disjunction of conjunctions

$$
(p \wedge q \wedge \neg r) \vee(p \wedge \neg q) \vee(p \vee r)
$$

Conjunctive \& Disjunctive

 Normal Form
- The transformation from CNF to DNF is exponential

$$
\begin{aligned}
& \left(p_{1} \wedge p_{2} \wedge p_{3}\right) \vee \\
& \left(p_{1} \wedge p_{2} \wedge q_{3}\right) \vee \\
& \left(p_{1} \wedge q_{2} \wedge p_{3}\right) \vee \\
\left(p_{1} \vee q_{1}\right) \wedge\left(p_{2} \vee q_{2}\right) \wedge\left(p_{3} \vee q_{3}\right)= & \left(p_{1} \wedge q_{2} \wedge q_{3}\right) \vee \\
& \left(q_{1} \wedge p_{2} \wedge p_{3}\right) \vee \\
& \left(q_{1} \wedge p_{2} \wedge q_{3}\right) \vee \\
& \left(q_{1} \wedge q_{2} \wedge p_{3}\right) \vee \\
& \left(q_{1} \wedge q_{2} \wedge q_{3}\right)
\end{aligned}
$$

Conjunctive Normal Form

- Any formula can be written in CNF

$$
\begin{aligned}
(p \vee q \rightarrow r) \vee(q \rightarrow p) & =\neg(p \vee q) \vee r \vee \neg q \vee p \\
& =(\neg p \wedge \neg q) \vee r \vee \neg q \vee p \\
& =(\neg p \vee r \vee \neg q \vee p) \\
& =(\neg q \vee r \vee \neg q \vee p) \\
& =(\neg q \vee r \vee p)
\end{aligned}
$$

(consequently, any formula can also be written in DNF, but the DNF formula may be exponentially larger)

Checking Satisfiability of

Formulas in DNF

- Checking DNF satisfiability is easy: process one conjunction at a time; if at least one conjunction is not a contradiction, the formula is satisfiable
\rightarrow DNF satisfiability can be decided in polynomial time
$\left(p_{1} \wedge p_{3} \wedge \neg p_{3}\right) \vee$
$\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right) \vee$
$\left(p_{1} \wedge \neg p_{2} \wedge p_{3}\right) \vee$
$\left(\neg p_{1} \wedge p_{3} \wedge \neg p_{3}\right) \vee$

Conversion to DNF is not feasible in most cases (exponential blowup)

Checking Satisfiability of

Formulas in CNF

- No polynomial algorithm is known for checking the satisfiability of arbitrary CNF formulas

Example:

we could use such an algorithm to solve graph coloring with k colors

- for each node i, create a formula

$$
\phi_{i}=p_{i 1} \vee p_{i 2} \vee \cdots \vee p_{i k}
$$

indicating that each node i must have a color

- for each node i and different pair of colors c_{1} and c_{2}, create a formula

$$
\phi_{i c_{1} c_{2}}=\neg\left(p_{i c_{1}} \wedge p_{i c_{2}}\right)=\neg p_{i c_{1}} \vee \neg p_{i c_{2}}
$$

indicating a node may not have more than 1 color

- for each edge, create k formulas

$$
\phi_{i j c}=\neg\left(p_{i c} \wedge p_{j c}\right)=\neg p_{i c} \vee \neg p_{j c}
$$

indicating that a pair connected nodes i and j may not both
have color c at the same time

"At-most-once" constraint

- Let us have variables x_{1}, \ldots, x_{n} and require that at most one of these variables is one
- Constraints on the previous slide:
$\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{n}\right) \wedge \cdots \wedge\left(\neg x_{n-1} \vee \neg x_{n}\right)$
$\rightarrow n(n-1) / 2$ clauses in total
- We can do better...

"At-most-once" constraint

- Introduce additional variables $a_{1}, \ldots a_{n}$
- Idea: let a_{i} be true if one of x_{1}, \ldots, x_{i} is true
- Formally:
$\neg a_{i} \vee \neg x_{i+1} \quad\left(a_{i}\right.$ and x_{i+1} may not be true at the same time)
$\neg a_{i} \vee a_{i+1} \quad$ (if a_{i} is true, then a_{i+1} is true)
$\neg x_{i} \vee a_{i} \quad$ (if x_{i} is true, then a_{i} is true)
for all $1 \leq i \leq n-1$
- 3(n-1) clauses in total!

Resolution Rule

Essential in most satisfiability solvers for CNF formulas is the resolution rule for clauses:
Given two clauses $l_{1} \vee \cdots \vee l_{k}$ and $m_{1} \vee \cdots \vee m_{n}$ where $l_{1}, \ldots, l_{k}, m_{1}, \ldots, m_{n}$ represent literals and it holds that $l_{i}=\neg m_{j}$, then it holds that

$$
\begin{aligned}
& l_{1} \vee \cdots \vee l_{k}, m_{1} \vee \cdots \vee \cdots m_{n} \vdash R \\
& \quad l_{1} \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots l_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots m_{n}
\end{aligned}
$$

Example: $p \vee q \vee \neg r, r \vee s \vdash_{R} p \vee q \vee s$

$$
r \rightarrow p \vee q, r \vee s \vdash_{R} p \vee q \vee s
$$

Proof for Resolution

on an example

1.	$p \vee q$	premise
2.	$q \rightarrow r$	premise
3.	p	assumption
4.	$p \vee r$	
5.	$p \vee \vee r$	
6.	q	Vi 3
7.	$p \vee r$	assumption
8.	$p \vee r$	$\rightarrow \mathrm{e} 2,5$

Completeness of Resolution

- If it holds that $C_{1}, \ldots, C_{n} \models \perp$ for clauses C_{1}, \ldots, C_{n} (i.e. the clauses are a contradiction), then we can derive \perp from C_{1}, \ldots, C_{n} by repeated application of the resolution rule

$$
\begin{aligned}
& p, p \rightarrow q \vee r, q \rightarrow \perp, r \rightarrow \perp \vdash_{R} \\
& q \vee r, q \rightarrow \perp, r \rightarrow \perp \\
& \vdash_{R} \\
& r, r \rightarrow \perp \\
& \vdash_{R} \\
& \perp
\end{aligned}
$$

How to find the resolution steps in general?
For some types of clauses it is easier...

Definite clauses \&

Horn clauses

- A definite clause is a clause with exactly one positive literal

$$
p, q, p \wedge q \rightarrow t
$$

- A horn clause is a clause with at most one positive literal

$$
p, q, p \wedge q \rightarrow t, p \wedge q \rightarrow \perp
$$

A clause with one positive literal is called a fact

Forward chaining for

 Definite clauses- The forward chaining algorithm calculates facts that can be entailed from a set of definite clauses

C = initial set of definite clauses
repeat
if there is a clause $p_{\mathrm{r}}, \ldots, p_{n} \rightarrow q$ in \boldsymbol{C} where $p_{\mathrm{r}}, \ldots, p_{n}$ are
facts in C then add fact q to $C \triangleleft$ end if

Resolution

until no fact could be added return all facts in \mathbf{C}

This algorithm is complete for facts: any fact that is entailed, will be derived.

Forward chaining for Horn

 clauses- We now also allow to add \perp and other clauses without positive literals to C
- We stop immediately \perp when is found, and return that the set of formulas is contradictory.

$$
\begin{aligned}
& \mathbf{C}_{1}=\{p, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \perp\} \\
& \mathbf{C}_{2}=\{p, q, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \perp\} \\
& \mathbf{C}_{3}=\{p, q, r, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \perp\} \\
& \mathbf{C}_{4}=\{p, q, r, \perp, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \perp\}
\end{aligned}
$$

Note:

1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment for Horn clauses

- Suppose we would like to know whether

$$
C_{1}, \ldots, C_{n} \models p_{1}, \ldots, p_{n} \rightarrow q
$$

where C_{1}, \ldots, C_{n} are Horn clauses; then it suffices to determine whether

$$
C_{1}, \ldots, C_{n}, p_{1}, \ldots, p_{n} \vdash_{R} q
$$

(we can show this by means of \rightarrow introduction)

- As entailment of facts can be decided in linear time, Horn clause entailment can be determined in linear time as well

