
PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Clauses
Clauses are formulas consisting only of and

they can also be written using , (after) and → →
(before)→

an atom or its negation is called a literal

Clause without
positive literal

Clause without
negative literal

Empty clause
is considered
false

(brackets within a
clause are not allowed!)

Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it consists

of a disjunction of conjunctions

Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential

Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF,
but the DNF formula may be exponentially larger)

Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one

conjunction at a time; if at least one conjunction is not
a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases
(exponential blowup)

Checking Satisfiability of
Formulas in CNF
No polynomial algorithm is known for checking the

satisfiability of arbitrary CNF formulas
Example:
we could use such an algorithm to solve graph coloring with k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both
have color c at the same time

“At-most-once” constraint
Let us have variables and require that at

most one of these variables is one
Constraints on the previous slide:

 clauses in total→

We can do better...

“At-most-once” constraint
Introduce additional variables
Idea: let be true if one of is true
Formally:

for all
3(n-1) clauses in total!

(and may not be true at the same time)
(if is true, then is true)
(if is true, then is true)

Resolution Rule

Given two clauses and ,
where represent literals
and it holds that , then it holds that

Essential in most satisfiability solvers for CNF formulas is the
resolution rule for clauses:

Example:

Proof for Resolution

1. premise
2. premise
3. assumption
4. i 3
5. assumption
6. e 2,5→
7. i 6
8. e 1,3-4, 5-7

on an example

Completeness of Resolution
If it holds that for clauses

 (i.e. the clauses are a contradiction), then
we can derive from
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier...

Definite clauses &
Horn clauses
A definite clause is a clause with exactly one positive

literal

A horn clause is a clause with at most one positive
literal

A clause with one positive literal is called a fact

Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn q→ in C where p1,...,pn are
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.

Forward chaining for Horn
clauses
We now also allow to add and other clauses

without positive literals to C
We stop immediately when is found, and return

that the set of formulas is contradictory.

Note:
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment
for Horn clauses
Suppose we would like to know whether

where are Horn clauses; then it suffices
to determine whether

(we can show this by means of introduction)→
As entailment of facts can be decided in linear time,

Horn clause entailment can be determined in linear
time as well

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

