PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan

Logic in Computer Science:

Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Clauses

Clauses are formulas consisting only of Vv and —

pVaqV r
—pV q

(brackets within a
clause are not allowed!)

they can also be written using =, V(after =) and A

(before —)

Empty clause
is considered

false

P

r—pVqg
p/\q%L/

T — 1

Clause without
positive literal

| > pV g« Clause without

negative literal

an atom or its negation is called a literal

| Conjunctive & Disjunctive
Normal Form

A formula is in conjunctive normal form if it
consists of a conjunction of clauses

(pVagVv-r)A(pV-q)A({pVr)

(r—=pVgA(@—=p)A(T =pVr)

® “conjunction of disjunctions”

A formula is in disjunctive normal form if it consists
of a disjunction of conjunctions

(pAgNA=T)V(PA=q)V (pVrT)

Conjunctive & Disjunctive
Normal Form

The transformation from CNF to DNF is exponential

(p1 A p2 A D3)
(p1 A p2 A qs3)
Epl N\ g2 /\P3))
P1 AN g2 A\ g3
(P1Vai) N (p2Va2)A(p3Vas) = (g1 A p2 A p3)
(g1 Ap2 N g3)
E 1 N\ Q2 /\p3;

g1 N\ g2 N\ g3

V
V
V
V
V
V
V

Conjunctive Normal Form

Any formula can be written in CNF

(Vg s ElVilg >pl - ApVgIVTV gp

(~pA=g)VTV-gVp
(mpVrV-ogVp)
A(=g V1TV -gVp)
Cg\r\p

(consequently, any formula can also be written in DNF,
but the DNF formula may be exponentially larger)

. Checking Satisfiability of
Formulas in DNF

Checking DNF satisfiability is easy: process one
conjunction at a time; if at least one conjunction is not
a contradiction, the formula is satisfiable

— DNF satisfiability can be decided in polynomial time

(p1 A p3 A —p3)V
(p1 A —p2 A —p3)V
(p1 A —p2 A p3)V

(

—p1 A p3 A —p3)V

Conversion to DNF is not feasible in most cases
(exponential blowup)

Checking Satisfiability of
Formulas in CNF

No polynomial algorithm is known for checking the
satisfiability of arbitrary CNF formulas

Example:

we could use such an algorithm to solve graph coloring with k colors
* for each node i, create a formula

®i = pi1 VD2 V-V Dk
indicating that each node i must have a color
» for each node i and different pair of colors c and c, create a formula
¢i01 C2 — _I(picl /\ piCQ) — _'picl \/ _'piCQ
indicating a node may not have more than 1 color
* for each edge, create k formulas
¢ijc — _'(pic A pjc) = "Pic V Pjc
indicating that a pair connected nodes i and j may not both
have color c at the same time

“At-most-once” constraint

Let us have variables x1,...,%, and require thatat
most one of these variables is one

Constraints on the previous slide:
(_Iilj'l V _ICUQ) ey (_l.fCl V _1333) N\ (_Iflfl V _ICIJn) NG (_Iilfn_l V _ICCn)

- n(n —1)/2 clauses in total

We can do better...

“At-most-once” constraint

Introduce additional variables a;,...a,
Idea: let a; be true if oneof xz1,...,x; istrue
Formally:

—a; V 7x;11 (a; and x;41 may not be true at the same time)
—a; V Gy (if a; is true, then a;11 is true)
T VoA (if @; is true, then a; is true)

forall 1 <1< n—1

3(n-1) clauses in total!

Resolution Rule

Essential in most satisfiability solvers for CNF formulas is the
resolution rule for clauses:

Giventwoclauses [{ V ---V Iz and my V- -V m,,
where l1,...,lg, m1,..., M, represent literals

and it holds that [, = —m i then it holds that

LV Vhom e om |
11\/---\/li_l\/lz-+1\/---lk\/ml\/---\/mj_1ij+1\/---mn

Example: pVgqgV r,rVskErpVqVs
r—pVqgrVstrppVaqVs

Proof for Resolution

on an example

pVq premise
q—rT premise

D assumption
ApVr Vi3

_q assumption
r —e 2,5

pNVT Vi6
. p VT Ve 1,3-4, 5-7

®N OV AW N

Completeness of Resolution

Ifit holds that C;,...,C,, &= L forclauses
C4,...,C, (ie.theclausesarea contradiction), then
we can derive L from C4,...,C,

by repeated application of the resolution rule

p,p—>qVr,g—Lr—1L Fr qVr,gq— L, r— L
-r ., r— L
R J

How to find the resolution steps in general?
For some types of clauses it is easier...

- Definite clauses &
Horn clauses

A definite clause is a clause with exactly one positive
literal

P,qg,pANqg—t

A horn clause is a clause with at most one positive
literal

H,q,p/\q—H’f,p/\q—>L

A clause with one positive literal is called a fact

Forward chaining-
Definite clauses

@ The forward chaining algorithm calculates facts
that can be entailed from a set of definite clauses

This algorithm is complete for facts: any fact that is entailed,
will be derived.

Forward chaining for Horn™
clauses

We now also allow toadd | and other clauses
without positive literals to C

We stop immediately _| when is found, and return
that the set of formulas is contradictory.

Ci={pp—>qgpNqg—rr— 1}

CZ :{p7Q7p_>Q7p/\q_>T7T_>J—}

Cs ={p.q,r,p—>qpANqg—r,r— L}
Cis={p,q¢,7, L,p—=>qpANqg—r,r— 1}

Note:
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.

- Deciding entailment
for Horn clauses

Suppose we would like to know whether
Olv"'ac’n — P1,---9Pn 7 ¢

where (1,..., (), are Horn clauses; then it suffices
to determine whether

Cla"'acnvplv"'vpn I_Rq

(we can show this by means of = introduction)

As entailment of facts can be decided in linear time,
Horn clause entailment can be determined in linear

time as well

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

