PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004

Russell & Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2010

Clauses

Clauses are formulas consisting only of \lor and \neg

 $\begin{array}{c} p \lor q \lor \neg r \\ \neg p \lor \neg q \end{array}$

(brackets within a clause are not allowed!)

they can also be written using \rightarrow , \forall (after \rightarrow) and \land (before \rightarrow)

Empty clause is considered *false*

$$\begin{array}{c} r \rightarrow p \lor q \\ p \land q \rightarrow \bot \\ \top \rightarrow p \lor q \\ \bullet \top \rightarrow \bot \end{array}$$

Clause without positive literal

Clause without negative literal

an atom or its negation is called a literal

Conjunctive & Disjunctive Normal Form

 A formula is in <u>conjunctive normal form</u> if it consists of a conjunction of clauses

$$(p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$

(r \rightarrow p \langle q) \langle (T \rightarrow p \langle r)

- "conjunction of disjunctions"
- A formula is in <u>disjunctive normal form</u> if it consists of a disjunction of conjunctions

$$(p \land q \land \neg r) \lor (p \land \neg q) \lor (p \lor r)$$

Conjunctive & Disjunctive Normal Form

The transformation from CNF to DNF is exponential

 $(p_1 \lor q_1) \land (p_2 \lor q_2) \land (p_3 \lor q_3) =$

 $(p_1 \land p_2 \land p_3) \lor (p_1 \land p_2 \land q_3) \lor (p_1 \land q_2 \land p_3) \lor (p_1 \land q_2 \land q_3) \lor (q_1 \land p_2 \land q_3) \lor (q_1 \land p_2 \land q_3) \lor (q_1 \land q_2 \land q_3)$

Conjunctive Normal Form

Any formula can be written in CNF

$$\begin{array}{rcl} (p \lor q \to r) \lor (q \to p) &=& \neg (p \lor q) \lor r \lor \neg q \lor p \\ &=& (\neg p \land \neg q) \lor r \lor \neg q \lor p \\ &=& (\neg p \lor r \lor \neg q \lor p) \\ && \land (\neg q \lor r \lor \neg q \lor p) \\ &=& (\neg q \lor r \lor p) \end{array}$$

(consequently, any formula can also be written in DNF, but the DNF formula may be exponentially larger)

Checking Satisfiability of Formulas in DNF

 Checking DNF satisfiability is easy: process one conjunction at a time; if at least one conjunction is not a contradiction, the formula is satisfiable

→ DNF satisfiability can be decided in polynomial time

$$(p_{1} \land p_{3} \land \neg p_{3}) \lor (p_{1} \land \neg p_{2} \land \neg p_{3}) \lor (p_{1} \land \neg p_{2} \land p_{3}) \lor (p_{1} \land \neg p_{2} \land p_{3}) \lor (\neg p_{1} \land p_{3} \land \neg p_{3}) \lor$$

Conversion to DNF is not feasible in most cases (exponential blowup)

Checking Satisfiability of Formulas in CNF

 No polynomial algorithm is known for checking the satisfiability of arbitrary CNF formulas

Example:

we could use such an algorithm to solve graph coloring with *k* colors • for each node *i*, create a formula

 $\phi_i = p_{i1} \lor p_{i2} \lor \cdots \lor p_{ik}$

indicating that each node *i* must have a color

• for each node *i* and different pair of colors *c*, and *c*, create a formula

 $\phi_{ic_1c_2} = \neg (p_{ic_1} \land p_{ic_2}) = \neg p_{ic_1} \lor \neg p_{ic_2}$ indicating a node may not have more than 1 color

• for each edge, create *k* formulas

 $\phi_{ijc} = \neg (p_{ic} \land p_{jc}) = \neg p_{ic} \lor \neg p_{jc}$ indicating that a pair connected nodes *i* and *j* may not both have color *c* at the same time

"At-most-once" constraint

- Let us have variables x_1, \ldots, x_n and require that at most one of these variables is one
- Constraints on the previous slide:

 $(\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_n) \land \dots \land (\neg x_{n-1} \lor \neg x_n)$

→
$$n(n-1)/2$$
 clauses in total

We can do better...

"At-most-once" constraint

- Introduce additional variables $a_1, \ldots a_n$
- Idea: let a_i be true if one of x_1, \ldots, x_i is true
- Formally:

 $\neg a_i \vee \neg x_{i+1} \quad (a_i \text{ and } x_{i+1} \text{ may not be true at the same time})$ $\neg a_i \vee a_{i+1} \quad (\text{if } a_i \text{ is true, then } a_{i+1} \text{ is true})$ $\neg x_i \vee a_i \quad (\text{if } x_i \text{ is true, then } a_i \text{ is true})$ for all $1 \leq i \leq n-1$

3(n-1) clauses in total!

Resolution Rule

Essential in most satisfiability solvers for CNF formulas is the **resolution rule** for clauses:

Given two clauses $l_1 \lor \cdots \lor l_k$ and $m_1 \lor \cdots \lor m_n$ where $l_1, \ldots, l_k, m_1, \ldots, m_n$ represent literals and it holds that $l_i = \neg m_j$, then it holds that

$$l_1 \lor \cdots \lor l_k, m_1 \lor \cdots \lor \cdots m_n \vdash_R \\ l_1 \lor \cdots \lor l_{i-1} \lor l_{i+1} \lor \cdots \lor l_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots m_n$$

Example: $p \lor q \lor \neg r, r \lor s \vdash_R p \lor q \lor s$ $r \to p \lor q, r \lor s \vdash_R p \lor q \lor s$

Proof for Resolution on an example

Completeness of Resolution

• If it holds that $C_1, \ldots, C_n \models \bot$ for clauses C_1, \ldots, C_n (i.e. the clauses are a contradiction), then we can derive \bot from C_1, \ldots, C_n by repeated application of the resolution rule

How to find the resolution steps in general? For some types of clauses it is easier...

Definite clauses &

Horn clauses

 A <u>definite clause</u> is a clause with exactly one positive literal

 $p,q,p\wedge q\to t$

• A <u>horn clause</u> is a clause with at most one positive literal

$$p,q,p \land q \to t, p \land q \to \bot$$

A clause with one positive literal is called a **fact**

Forward chaining for Definite clauses

 The <u>forward chaining algorithm</u> calculates facts that can be entailed from a set of definite clauses

```
C = \text{initial set of definite clauses}
repeat
if there is a clause p_r, \dots, p_n \rightarrow q in C where p_r, \dots, p_n are
facts in C then
add fact q to C \leftarrow
Resolution
end if
until no fact could be added
return all facts in C
```

This algorithm is complete for facts: any fact that is entailed, will be derived.

Forward chaining for Horn

clauses

- We now also allow to add \perp and other clauses without positive literals to *C*
- We stop immediately \(\box) when is found, and return that the set of formulas is contradictory.

$$\begin{array}{l} \mathbf{C}_{1} = \{p, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{2} = \{p, q, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{3} = \{p, q, r, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \\ \mathbf{C}_{4} = \{p, q, r, \bot, p \rightarrow q, p \wedge q \rightarrow r, r \rightarrow \bot\} \end{array}$$

Note:

1) a set of definite clauses is always satisfiable.

2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment for Horn clauses

Suppose we would like to know whether

$$C_1,\ldots,C_n\models p_1,\ldots,p_n\to q$$

where C_1, \ldots, C_n are Horn clauses; then it suffices to determine whether

$$C_1,\ldots,C_n,p_1,\ldots,p_n\vdash_R q$$

(we can show this by means of \rightarrow introduction)

 As entailment of facts can be decided in linear time, Horn clause entailment can be determined in linear time as well