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Clauses
Clauses are formulas consisting only of        and

they can also be written using ,      (after ) and      → →
(before )→

an atom or its negation is called a literal

Clause without 
positive literal

Clause without 
negative literal

Empty clause
is considered 
false

(brackets within a
clause are not allowed!)



Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it 

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it consists 

of a disjunction of conjunctions



Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential



Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF, 
but the DNF formula may be exponentially larger)



Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one 

conjunction at a time; if at least one conjunction is not 
a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases 
(exponential blowup)



Checking Satisfiability of 
Formulas in CNF
No polynomial algorithm is known for checking the 

satisfiability of arbitrary CNF formulas
Example: 
we could use such an algorithm to solve graph coloring with k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both 
have color c at the same time



“At-most-once” constraint
Let us have variables                         and require that at 

most one of these variables is one
Constraints on the previous slide:

                        clauses in total→

We can do better...



“At-most-once” constraint
Introduce additional variables
Idea: let       be true if one of                    is true
Formally:

for all
3(n-1) clauses in total! 

(     and          may not be true at the same time)
(if      is true, then          is true)
(if      is true, then      is true)



Resolution Rule

Given two clauses                           and                              ,
where                                             represent literals 
and it holds that                     , then it holds that

Essential in most satisfiability solvers for CNF formulas is the 
resolution rule for clauses:

Example:



Proof for Resolution

1. premise
2. premise
3.    assumption
4.    i 3
5. assumption
6. e 2,5→
7.    i 6
8.    e 1,3-4, 5-7

on an example



Completeness of Resolution
If it holds that                                 for clauses

                      (i.e. the clauses are a contradiction), then 
we can derive        from  
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier... 



Definite clauses &
Horn clauses
A definite clause is a clause with exactly one positive 

literal

A horn clause is a clause with at most one positive 
literal

A clause with one positive literal is called a fact



Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts 

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.



Forward chaining for Horn 
clauses
We now also allow to add        and other clauses 

without positive literals to C
We stop immediately       when is found, and return 

that the set of formulas is contradictory.

Note: 
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.



Deciding entailment
for Horn clauses
Suppose we would like to know whether

where                         are Horn clauses; then it suffices 
to determine whether

(we can show this by means of  introduction)→
As entailment of facts can be decided in linear time, 

Horn clause entailment can be determined in linear 
time as well
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