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Clauses
Clauses are formulas consisting only of        and

they can also be written using ,      (after ) and      → →
(before )→

an atom or its negation is called a literal

Clause without 
positive literal

Clause without 
negative literal

Empty clause
is considered 
false

(brackets within a
clause are not allowed!)



Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it 

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it consists 

of a disjunction of conjunctions



Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential



Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF, 
but the DNF formula may be exponentially larger)



Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one 

conjunction at a time; if at least one conjunction is not 
a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases 
(exponential blowup)



Checking Satisfiability of 
Formulas in CNF
No polynomial algorithm is known for checking the 

satisfiability of arbitrary CNF formulas
Example: 
we could use such an algorithm to solve graph coloring with k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both 
have color c at the same time



“At-most-once” constraint
Let us have variables                         and require that at 

most one of these variables is one
Constraints on the previous slide:

                        clauses in total→

We can do better...



“At-most-once” constraint
Introduce additional variables
Idea: let       be true if one of                    is true
Formally:

for all
3(n-1) clauses in total! 

(     and          may not be true at the same time)
(if      is true, then          is true)
(if      is true, then      is true)



Resolution Rule

Given two clauses                           and                              ,
where                                             represent literals 
and it holds that                     , then it holds that

Essential in most satisfiability solvers for CNF formulas is the 
resolution rule for clauses:

Example:



Proof for Resolution

1. premise
2. premise
3.    assumption
4.    i 3
5. assumption
6. e 2,5→
7.    i 6
8.    e 1,3-4, 5-7

on an example



Completeness of Resolution
If it holds that                                 for clauses

                      (i.e. the clauses are a contradiction), then 
we can derive        from  
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier... 



Definite clauses &
Horn clauses
A definite clause is a clause with exactly one positive 

literal

A horn clause is a clause with at most one positive 
literal

A clause with one positive literal is called a fact



Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts 

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.



Forward chaining for Horn 
clauses
We now also allow to add        and other clauses 

without positive literals to C
We stop immediately       when is found, and return 

that the set of formulas is contradictory.

Note: 
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.



Deciding entailment
for Horn clauses
Suppose we would like to know whether

where                         are Horn clauses; then it suffices 
to determine whether

(we can show this by means of  introduction)→
As entailment of facts can be decided in linear time, 

Horn clause entailment can be determined in linear 
time as well
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