
PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Clauses
Clauses are formulas consisting only of and

they can also be written using , (after) and → →
(before)→

an atom or its negation is called a literal

Clause without
positive literal

Clause without
negative literal

Empty clause
is considered
false

(brackets within a
clause are not allowed!)

Conjunctive & Disjunctive
Normal Form
A formula is in conjunctive normal form if it

consists of a conjunction of clauses

“conjunction of disjunctions”
A formula is in disjunctive normal form if it consists

of a disjunction of conjunctions

Conjunctive & Disjunctive
Normal Form
The transformation from CNF to DNF is exponential

Conjunctive Normal Form
Any formula can be written in CNF

(consequently, any formula can also be written in DNF,
but the DNF formula may be exponentially larger)

Checking Satisfiability of
Formulas in DNF
Checking DNF satisfiability is easy: process one

conjunction at a time; if at least one conjunction is not
a contradiction, the formula is satisfiable

 → DNF satisfiability can be decided in polynomial time

Conversion to DNF is not feasible in most cases
(exponential blowup)

Checking Satisfiability of
Formulas in CNF
No polynomial algorithm is known for checking the

satisfiability of arbitrary CNF formulas
Example:
we could use such an algorithm to solve graph coloring with k colors

• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both
have color c at the same time

“At-most-once” constraint
Let us have variables and require that at

most one of these variables is one
Constraints on the previous slide:

 clauses in total→

We can do better...

“At-most-once” constraint
Introduce additional variables
Idea: let be true if one of is true
Formally:

for all
3(n-1) clauses in total!

(and may not be true at the same time)
(if is true, then is true)
(if is true, then is true)

Resolution Rule

Given two clauses and ,
where represent literals
and it holds that , then it holds that

Essential in most satisfiability solvers for CNF formulas is the
resolution rule for clauses:

Example:

Proof for Resolution

1. premise
2. premise
3. assumption
4. i 3
5. assumption
6. e 2,5→
7. i 6
8. e 1,3-4, 5-7

on an example

Completeness of Resolution
If it holds that for clauses

 (i.e. the clauses are a contradiction), then
we can derive from
by repeated application of the resolution rule

How to find the resolution steps in general?
For some types of clauses it is easier...

Definite clauses &
Horn clauses
A definite clause is a clause with exactly one positive

literal

A horn clause is a clause with at most one positive
literal

A clause with one positive literal is called a fact

Forward chaining for
Definite clauses
The forward chaining algorithm calculates facts

that can be entailed from a set of definite clauses
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn q→ in C where p1,...,pn are
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.

Forward chaining for Horn
clauses
We now also allow to add and other clauses

without positive literals to C
We stop immediately when is found, and return

that the set of formulas is contradictory.

Note:
1) a set of definite clauses is always satisfiable.
2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment
for Horn clauses
Suppose we would like to know whether

where are Horn clauses; then it suffices
to determine whether

(we can show this by means of introduction)→
As entailment of facts can be decided in linear time,

Horn clause entailment can be determined in linear
time as well

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

